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Energy distributions of clusters cooled by thermal radiation
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Abstract. Particles that cool radiatively in vacuum reach a limiting energy distribution, defined by the low
energy dielectric function, the heat capacity and time. We find that in a finite time, both mean temperature
and the width of the distribution converge to powerlaws in time, and that the ratio of the two reach a
constant value which depends on the heat capacity and the photon absorption cross section. Further,
both the photon emission rate and the ratio of width to mean energy of the distribution show surprising
similarities with the analogous results for cooling by particle evaporation.

PACS. 36.40.-c Atomic and molecular clusters – 61.46.Bc Clusters – 61.46.Df Nanoparticles

1 Introduction

Clusters and molecules which have reached internal equi-
librium in vacuum emit excess energy predominantly in
reactions where bonds are broken and one or more atoms
are emitted. Reactions of this kind involve an activation
energy and thus effectively a Boltzmann factor which sup-
presses them very strongly when the internal energy con-
tent becomes sufficiently low. Emission of thermal radi-
ation, in contrast, does not necessarily suffer from this
cutoff because there is no intrinsic activation energy for
photon emission, only the photon energy is carried away
in the process. This will generally cause cooling by evapo-
ration or thermionic emission to dominate at high energy
and radiative cooling to dominate at low excitation energy.
The cross-over from emission of massive to massless par-
ticles is most easily observed for highly refractory mate-
rials. Thermal photon emission has indeed been observed
from clusters of several different materials [1–4]. The influ-
ence of radiation on unimolecular decay in the cross-over
region has already been investigated, mainly experimen-
tally, in connection with emission of infrared radiation
from molecules [5–7] and with emission from fullerenes
[8–12].

It is the purpose of this work to derive the energy dis-
tribution determined from the features specific to photon
emission, and to provide simple analytical results for the
case of a photon absorption cross section that varies as a
power of the photon energy. Apart from the replacement of
massive particles with an activation energy with massless
photons without, the situation is analogous to the decay
cascades described in the evaporative ensemble [13], and in
effect we will describe a radiative ensemble. We are aware
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that this cross section will not cover all physical situations
by far, but think that the simplicity gained will offset the
loss of generality.

2 Emission rates and temperature

Thermal photons are emitted with the rate constant [14]

k(E, ν) =
8πν2

c2
σph(ν)

e−
hν

Te1

1 − e
− hν

Te2

, (1)

where σph is photon absorption cross section.
The two temperatures, Te1, Te2 are the microcanonical

temperatures at the energies E − hν/2 and E − 3hν/2.
The microcanonical temperature is defined as [15,16]

T−1 ≡ d ln(ρ(E))
dE

, (2)

where ρ(E) is the density of states, or level density, of the
system at energy E. For a particle with sufficiently large
heat capacity relative to kB, the corrections of hν/2 and
3hν/2 in equation (1) can be neglected, one can use equa-
tion (1) with the uncorrected values Te1 ≈ Te2 ≈ T (E).
We will use this approximation throughout. We will fur-
thermore assume that the canonical heat capacity is con-
stant, equal to C = skB. In the high temperature limit
of harmonic oscillator degrees of freedom, s is equal to
the number of oscillators. We will use it more generally
as the heat capacity in units of kB. The microcanonical
temperature is then T = (E + E0)/(s− 1). For vibrations
which can be described as harmonic oscillators, E0 is the
sum of all zero point energies of the oscillators. The level
density and microcanonical temperature used here holds
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for harmonic oscillators above an energy corresponding to
the sum of vibrational quanta, i.e. we require E � 2E0.
For these energies the constant E0 does not have any in-
fluence on the results and can be set to zero without loss
of generality. Hence we will use the relation T = E/(s−1)
and interchange freely between T and E. The results here
are limited to an energy window below the unimolecular
regime and the one where the energy per degree of freedom
is above the typical vibrational quantum.

For the photon absorption cross section we will use

σph(ν) = α(hν)n. (3)

The motivation for this choice is the behavior of a metal-
lic particle. In these, the low photon energy absorption
cross section gets a strong contribution from the surface
plasmon resonance, for which n = 2, and α is given by
parameters such as the width of the resonance etc. The
value n = 0 corresponds to a Planck-like spectrum. In the
interest of treating the more general problem, however, we
shall leave n and α unspecified in the following.

Except where otherwise noted we will use kB = 1, i.e
use energy units for temperature.

3 Time development equation

A master equation for the problem has been used previ-
ously and solved for the specific case of fullerene cool-
ing [17]. But even with the simplifications mentioned
above a complete analytical solution for the energy dis-
tribution for all times is beyond the scope of this paper.
We will instead consider analytically the development of
the first two moments of the energy distribution.The first
two moments will provide a good description for relatively
narrow distributions, corresponding to large heat capaci-
ties.

The time derivative of the m’th moment is given by

dEm

dt
=

∫ ∞

0

f(E)
∫ E

0

k(E, ν) ((E − hν)m − Em) dνdE,

(4)
where f(E) is the normalized energy distribution. The
upper limit of the inner integral can be replaced by infinity
with little error. The integrals over the photon emission
rate constant and a power of the photon energy can be
calculated with standard techniques:

∫ ∞

0

k(E, ν)(hν)pdν =

8π

h3c2
αζ(n + p + 3)Γ (n + p + 3)T n+p+3. (5)

The remaining integral in equation (4) is over the energy
distribution. With the integrals in equation (5) they re-
duce to moments of the energy, Em and be calculated
term by term with an expansion of the energy around
the mean energy, E. The first two terms in this expan-
sion includes the mean energy and the variance in energy,

σ2
E ≡ 〈(E − E)2〉. For the first two moments one gets

equations of the form

dEp

dt
= −dp

(
E

n+p+3
+ gpσ

2
EE

n+p+1
)

, (6)

where p = 1, 2, gp = (n + p + 2)(n + p + 3)/2 and dp are
known constants. From the equation for dE2/dt one calcu-
lates the time derivative of σ2

E by subtraction of 2EdE/dt.
After conversion from energy to temperature one arrives
at the equations (with σT ≡ σE/(s − 1))

dT

dτ
= −a0T

n+4 − a1σ
2
T T

n+2

dσ2
T

dτ
= a2T

n+5
+ a3σ

2
T T

n+3
, (7)

where the time has been scaled as τ = tα 8π
h3c2 ζ(n+4)Γ (n+

4)/(s − 1). There is no natural scaling of the time in the
problem and the scaled time has a mixed dimension of
energy and physical time.

The coefficients in the equation are

a0 = 1, a1 =
1
2
(n + 3)(n + 4), a2 =

(n + 4)
(s − 1)

ζ(n + 5)
ζ(n + 4)

a3 = −2(n + 4) +
1
2

ζ(n + 5)
ζ(n + 4)

(n + 4)2(n + 5)
s − 1

. (8)

This equation is obviously obtained by a truncation of the
expansion of the equations of motion in terms of the mo-
ments. The justification for considering it is that it will
provide a guide to the asymptotic solutions and the ra-
tio T/σT in terms of the parameters of the problem.

4 Solution of the time development equations

Equations (7) have the asymptotic solutions

T = b0τ
−1/(n+3), σ2

T = b2
1τ

−2/(n+3), (9)

which can be seen by inspection. Furthermore, no other
powers of τ are solutions. We note that the terms involving
higher moments, left out in equation (7), as well as the
equations for these moments, have the same structure as
those given. Specifically, the equations for dEp/dt involve
terms of the form T a(σ2

T )bE3
c
... with a+ b/2+ c/3+ ... =

p + n + 3. We therefore expect this power dependence to
survive a more exact treatment. This is indeed borne out
by numerical simulations which will be treated in detail
elsewhere.

The solution of equation (7) also provides an equation
for the ratio b0/b1, i.e. the average temperature vs. the
spread in temperature

r ≡ b2
0

b2
1

= −1
2

a3 + 2a0

a2
±

√
−2a1

a2
+

1
4

(
a3 + 2a0

a2

)2

. (10)

The heat capacity enters this equation through the coeffi-
cients a2 and a3. The equation has no real solution below a
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critical value of a certain heat capacity, scrit , and two real
solutions above this. scrit depends on n and for n = 0, 1, 2
the values are scrit = 17, 22, 28. Numerical simulations
suggest that the existence of scrit is likely to be an arte-
fact of the simplified equation of motion and we will not
go into further details on the subject. For heat capacities
above scrit , however, the value calculated here for b0/b1

will give a reasonable estimate for the true value.
When equation (10) has real solutions, one is stable

and one is unstable. The stability of the solutions was in-
vestigated by adding a small perturbation, δT , δσT , to the
solutions in equation (9), inserting these in equation (7)
and linearizing the resulting time development equations
for the perturbations. A technical remark is in place here:
The variables to be studied for this calculation are most
convenient chosen as T and σT vs. T and σ2

T . The latter
choice requires the solution of two second order differential
equations to find the stability.

The resulting 2 × 2 matrix has a time dependence of
τ−1 which can be factored out in front of a constant ma-
trix. There is one matrix for each of the solutions of the
ratio b0/b1. To represent stable solutions both eigenvalues
of a matrix must be negative, and the convergence rate is
determined by the numerically smallest of these.

The general solution of the problem is very tedious
and not much insight is gained from the exact expression
which is very involved. We will apply the limit of large
heat capacity and consider the leading order in s − 1. In
this limit we find that the stable solution is given by the
positive-sign solution in equation (10), which corresponds
to the solution with the lowest ratio σT /T of the two. The
two Eigenvalues for this solution are

λ1 = −n + 4
n + 3

, λ2 = −2n + 7
n + 3

. (11)

The equation for the decay of the perturbation included
a factor 1/τ in front of the matrix, and the decay of a
perturbation from the asymptotic solutions is therefore
not exponential. Rather, it follows the powerlaw

δT ∝ τλ1 = τ− n+4
n+3 , (12)

and a similar one for σT with the same power. Although
not exponential, the power of τ is still a factor of n + 4
larger than the corresponding power for the development
of the mean values. The convergence towards T and σT is
thus more rapid than the rate of change of the quantities
themselves.

In the large s limit we can also calculate T/σT for the
asymptotic solutions. The next-to-leading order gives

r = 2(s − 1)
n + 3
n + 4

− 1
2
(n + 3). (13)

The value of b0 and b1 can be found from this value and the
algebraic equation obtained when inserting equation (9)
into equation (7). The results are, to leading order in s−1
and ignoring the ratios of the ζ-functions which are close
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Fig. 1. Comparison of large heat capacity, asymptotic so-
lutions for T , σT with numerical solutions of the differential
equations (7). The latter are started with different values of
σT and T = 105 in scaled units. The dashed and dash-dotted
lines are the approximations to the asymptotic values in equa-
tions (13, 14).
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Fig. 2. The same comparison as in Figure 1 but for a small
cluster, s = 30, and two different values of n. Only one initial
value for σT is shown. The straight lines are the asymptotic
solutions of equations (13, 14), in all cases corresponding to
the numerical solution which is closest in the figure.

to unity,

b0 = (n + 3)
−1

n+3 , b1 = (n + 3)
−1

n+3

(
n + 4
n + 3

)1/2 1√
2(s − 1)

.

(14)
Numerical solutions of equation (7) are shown in Figure 1
and compared to these approximate values for s = 1000.
Figure 2 shows similar curves for s = 30 and n = 0, 2. It
can be seen that even for s = 30, which is close to the crit-
ical heat capacity for these equations, do the large heat
capacity solutions agree fairly well with the numerical so-
lutions. The simulated time range is only illustrative. It is
not indicative of the range of times for which the physi-
cal assumptions used in the derivation can be expected to
hold.

The result in equation (13) is intuitively accept-
able: For large heat capacities the width decreases rel-
ative to the mean energy. The functional form is also
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understandable. The cooling through a given temperature
interval requires a number of photons which is propor-
tional to the heat capacity. The variance of this number
of photons thus increases proportional to the heat capacity
and hence the relative variance decreases with the number
of photons, i.e. with the heat capacity.

What is less trivial is the fact that the width of the en-
ergy distribution is essentially

√
2 less than the canonical

value. This is in fact precisely the same result one derives
for cooling exclusively by particle emission in the evapo-
rative ensemble [18], in spite of the very different cooling
mechanisms.

Translating the time dependence calculated in scaled
variables to physical values and introducing kB gives the
equation for the mean

T =
1

kB

(
α8π

h3c2

(n + 3)ζ(n + 4)Γ (n + 4)
s − 1

)− 1
n+3

t−1/(n+3).

(15)
For n = 0, s = 100, α = 100 Å2 the constant on the right
hand side is calculated to 12.6 Ks1/3. This value of n corre-
sponds to a Planck-like emission spectrum. For a particle
whose emission properties can be described with a classi-
cal dielectric function like the one used in [17,19,20] for
fullerenes, the cross section is, in the low frequency regime
and with some typical values,

σph =
q2

mecε0
γNe

(2πν)2

ω4
s

= 5.10 × 1015[J−2 m2](hν)2,

(16)
where q, me is the charge and mass of the electron, c the
speed of light, �γ = 15 eV, �ωs = 20 eV the width and
position of the resonance, and Ne = 200 the number of
valence electrons. With these numbers the constant in
equation (15) becomes 580 Ks1/5.

Another interesting feature of the solutions is the tem-
poral behavior of the photon emission rate constant inte-
grated over photon energies. For sufficiently narrow energy
distributions, i.e. for 2(s − 1) � 1, the mean also repre-
sents the integrated energy distribution fairly well. Use of
equations (9, 14) and the scaling factor on time give the
simple result∫ ∞

0

k(E, hν)dν =
ζ(n + 3)
ζ(n + 4)

s − 1
(n + 3)2

t−1 ≈ s − 1
(n + 3)2

1/t.

(17)
This result is surprising for several reasons. It does not de-
pend on the specific photon absorption cross section, only
on the power of the photon energy dependence, n. Sec-
ondly, it varies with time as a powerlaw with the power−1,
which is independent of the cross section. The third re-
mark is that equation (17) is also very similar to the emis-
sion rate for massive particles in an evaporative ensemble
which has been investigated both theoretically and exper-
imentally [21–23]. The only difference is that the n + 3
in the denominator here replaces the so-called Gspann
parameter, which is a dimensionless number with magni-
tudes around 25–35. This connection was suggested in [24],
albeit with a slightly different value, and not justified in
any detail.

5 Summary

Clusters that cool radiatively with a Planck-like spectrum
or with a spectrum given by the low energy tail of the sur-
face plasmon resonance will develop certain characteristic
features. One of these is a powerlaw decay of the mean
energy with time, and a parallel decay of the width of the
energy distribution. The ensemble shows striking similari-
ties to ensembles of large clusters that cool by evaporation,
viz. the relative width of the energy distribution is iden-
tical and is a squareroot 2 less than the canonical width
at the same internal energy. Also, the integrated photon
emission rate constant is similar, it varies as 1/t, and has a
prefactor which is proportional to the heat capacity The
present results cover the rudiments of radiative cooling
and more work is required to include the effects of the
background Planck radiation, of non-constant heat capac-
ity of the clusters, to demonstrate the generality of some of
the suggestions made here, and to explore the possibility
of scaled solutions to more general cases.
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